Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension.

نویسندگان

  • Ryan W Kobs
  • Nidal E Muvarak
  • Jens C Eickhoff
  • Naomi C Chesler
چکیده

Right heart failure due to pulmonary hypertension causes significant morbidity and mortality. To study the linked vascular mechanical and biological changes that are induced by pulmonary hypertension, we mechanically tested isolated left main pulmonary arteries from mice exposed to chronic hypobaric hypoxia and performed histological assays on contralateral vessels. In isolated vessel tests, hypoxic vessels stretched less in response to pressure than controls at all pressure levels. Given the short length and large diameter of the pulmonary artery, the tangent Young's modulus could not be measured; instead, an effective elastic modulus was calculated that increased significantly with hypoxia [(280 kPa (SD 53) and 296 kPa (SD 50) for 10 and 15 days, respectively, vs. 222 kPa (SD 35) for control; P < 0.02)]. Hypoxic vessels also had higher damping coefficients [(0.063 (SD 0.017) and 0.054 (SD 0.014) for 10 and 15 days, respectively, vs. 0.033 (SD 0.016) for control; P < 0.002)], indicating increased energy dissipation. The increased stiffness with hypoxia correlated with an increase in collagen thickness (percent collagen multiplied by wall thickness) as well as the sum of elastin and collagen thicknesses measured histologically in the artery wall. These results highlight the mechanobiological changes in the pulmonary vasculature that occur in response to hypoxia-induced pulmonary hypertension. Furthermore, they demonstrate significant vascular mechanical and biological changes that would increase pulmonary vascular impedance, leading to right heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats

Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...

متن کامل

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension.

In the present study we analyzed structural characteristics of muscular pulmonary arteries and arterioles in two classic models of pulmonary hypertension, the rat hypoxia and monocrotaline models. We hypothesized that an increase in medial cross-sectional area would result in reduction of the lumen area and that these parameters would correlate with the increase in pulmonary artery pressure (PA...

متن کامل

Chronic hypoxia does not cause wall thickening of intra‐acinar pulmonary supernumerary arteries

Chronic exposure to hypoxia causes pulmonary hypertension and pulmonary arterial remodeling. Although the exact mechanisms of this remodeling are unclear, there is evidence that it is dependent on hemodynamic stress, rather than on hypoxia alone. Pulmonary supernumerary arteries experience low hemodynamic stress as a consequence of reduced perfusion due to 90° branching angles, small diameters,...

متن کامل

Mitochondrial transplantation attenuates hypoxic pulmonary hypertension

Mitochondria are essential for the onset of hypoxia-induced pulmonary vasoconstriction and pulmonary vascular-remodeling, two major aspects underlying the development of pulmonary hypertension, an incurable disease. However, hypoxia induces relaxation of systemic arteries such as femoral arteries and mitochondrial heterogeneity controls the distinct responses of pulmonary versus femoral artery ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 288 3  شماره 

صفحات  -

تاریخ انتشار 2005